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Abstract

We present a non-linear numerical model describing the 3-D vibrations of a planar network of N sections
of string which are connected together at one common mobile extremity. We call such a network N-string.
For small-amplitude vibrations perpendicular to the N-string equilibrium plane, the numerical results
coincide with the already known analytical solutions of the linear model. This non-linear model makes it
possible to describe small- or large-amplitude 3-D vibrations of any kind of N-string subjected to an initial
plucking. The equations of motion are also presented in a dimensionless form and a vast dimensionless
physical parameter space is identified. The numerical model can be extended to more complex networks of
strings.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The understanding of the properties of vibrating systems is important because of their
commonness in mechanics and mechanical engineering [1, p. 155]. Such systems are also found in
molecular physics where the intramolecular bonds are often modelled as springs between masses
[2, p. 351]. In the case of systems of strings, the vibrations properties are of great interest in
acoustics [3]. Here, we are interested in the non-linear vibrations of certain types of networks of
strings. The vibrations of networks of strings have been studied by Schmidt [4], who obtained a
non-linear model using Hamilton’s principle and examined the corresponding linearized model in
the perspective of the controllability of the networks. The exponential stability of a long chain of
coupled vibrating strings has also been analyzed [5].
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We call N-string a network of N tightly stretched flexible strings connected together at one
common extremity. This common extremity, or junction point, is mobile while all other
extremities are in the same plane and constrained to remain stationary (see Fig. 1). In this paper,
we present a numerical model of the 3-D non-linear vibrations of an N-string about its
equilibrium position resulting from some initial plucking. We have previously analyzed the linear
vibrations which are perpendicular to the N-string equilibrium plane [3]. Analytical solutions were
obtained for that case. One of the main results from that study concerns the energy of the
vibration modes of a plucked symmetric N-string for N > 2: We have shown that higher modes of
even orders can be excited to energy levels above that of the fundamental mode by plucking at an
appropriate location along one of the strings. This phenomenon is impossible for an ordinary
ðN ¼ 2Þ string, where the energy of the fundamental mode always dominates.
The methods usually applied to study linear vibrations are of no help for the study of non-linear

vibrations since they rely on the superposition principle which is not valid for non-linear problems.
Furthermore, it is usually very difficult, if not impossible, to find analytical solutions to non-linear
problems. Although non-linear vibration problems can be treated using perturbation methods as in
Ref. [6], where the ordinary elastic string is considered (see also Ref. [7]), in this paper we shall
obtain quantitative results through numerical approximations of solutions to the equations
describing the non-linear vibrations of a discretized model of a continuous N-string. Some general
properties of the continuous N-string and its non-linear vibrations will also be deduced.
The paper is organized as follows. In Section 2, we set up the general geometric framework and

present a discretized model of the N-string, where each string is replaced by a set of finite masses
joined by massless springs. We establish the equations of motion of the discretized N-string in
Section 3. In Section 4, we obtain two equations which determine the horizontal position of the
junction point. In Section 5, we find the equations describing the position of the points on a
plucked continuous N-string in static equilibrium. In Section 6, we present some numerical results
which include a validation of the model and various simulations of a symmetric 3-string. Finally,
Section 7 contains a discussion of our results.

2. Discretized N-string

Let an N-string whose N strings in equilibrium position are in the same plane, form at their
junction point angels yi and have length li; i ¼ 1; 2;y;N: We define yi as the angle between the

Fixed Extremities

Junction Point

Fig. 1. Schematic of an 5-string. All the extremities are fixed while the junction point is free to move.
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ith and the ði þ 1Þth string for i ¼ 1; 2;y;N � 1; and between the Nth and the first string if i ¼ N:
We assume that each string of the N-string is flexible and elastic, and is subjected to no internal
nor external friction. The position along the ith string of the N-string in equilibrium is described
by the co-ordinates xi; 0pxipli; i ¼ 1; 2;y;N; where xi ¼ 0 coincides with the junction point of
the N strings. Let riðxiÞ > 0 be the function describing the linear mass density of the ith string.
From the xi; we construct N orthogonal right-handed systems of axes xiyiz sharing the same z-
axis. Following the same methodology as in Ref. [8, p. 437], for instance, we obtain a discretized
model of an N-string by replacing each of its N strings with a set of finite masses placed at regular
intervals along each of the strings. The spacing between the masses on the ith string is denoted
by hi and the position by xij ; where i ¼ 1; 2;y;N; j ¼ 0; 1;y; Ji; Ji ¼ li=hi and xi0 ¼ 0:
We assume that each of the discrete masses is linked to its direct neighbours by massless springs
(see Fig. 2).
At the point xij ; the finite mass mij of the discretized model is defined in terms of the function ri:

For i ¼ 1; 2;y;N and j ¼ 1; 2;y; Ji � 1; we set

mij ¼
Z xijþhi=2

xij�hi=2
riðxÞ dx:

Similarly, the finite mass m0 at the junction point xi0 ¼ 0 will normally be defined by

m0 ¼
XN

i¼1

Z xi1=2

0

riðxÞ dx:

Note that it is not necessary to define finite masses at the stationary points xiJi
:

3. Equations of motion

We shall now determine the equations describing the motion of the masses of the discretized N-
string. Let us first observe that in the xiyiz system, the position of any point on the ith string at
time tX0 can be given by the vector

riðxi; tÞ ¼ ðxi þ uiðxi; tÞÞei1 þ viðxi; tÞei2 þ wiðxi; tÞe3; ð1Þ

r i j+1 

i j r 

i j-1 r 

i j-1 s 
i j s 

(x    )
(x     ) 

(x  ) 

massless spring

mass 

Fig. 2. Continuous strings of the N-string are discretized using finite masses linked by massless springs. The vector r

gives the position of each finite mass, while s is a unit vector parallel to the displacement vector between adjacent

masses.

S. Gaudet, C. Gauthier / Journal of Sound and Vibration 263 (2003) 269–284 271



where ei1; ei2; e3 form an orthonormal basis for the system xiyiz; and ui; vi;wi are twice
differentiable functions representing the displacements in the xi; yi and z directions, respectively.
The N-string is plucked at t ¼ 0:
We shall begin with the masses which are not at the junction point, i.e., those located at xij for

j > 0: The motion of each of these masses results from the tensions exerted on it by its direct
neighbours. If we designate these tensions by Tij�1 ¼ Tiðxij�1; tÞ; Tij ¼ Tiðxij; tÞ; and assume a
linear configuration of the massless springs between neighbouring masses (see Fig. 2), then from
Newton’s second law it follows that

Tij�1 þ Tij ¼ mij .rij ; ð2Þ

where .rij ¼ @2riðxij ; tÞ=@t2: Note that it is not assumed that the tensions in the N strings are equal
to the same constant, as opposed to the case of the linear model of an ordinary string (see e.g.,
Ref. [8, p. 437]), and the case of the linear model of an N-string [3].
Let us define the scalar functions Tij�1 ¼ Tiðxij�1; tÞ and Tij ¼ Tiðxij; tÞ such that

Tij�1 ¼ �Tij�1sij�1; Tij ¼ Tijsij ;

where sil ¼ siðxil ; tÞ is the unit vector parallel to rilþ1 � ril at time t for l ¼ j � 1; j; i.e.,

sil ¼
rilþ1 � ril

8rilþ1 � ril8

¼
ð1þ u0

ilÞei1 þ v0ilei2 þ w0
ile3

½ð1þ u0ilÞ
2 þ ðv0ilÞ

2 þ ðw0
ilÞ

2�1=2
;

where

u0
ij ¼

1

hi

½uiðxijþ1; tÞ � uiðxij; tÞ�; v0ij ¼
1

hi

½viðxijþ1; tÞ � viðxij; tÞ�;

w0
ij ¼

1

hi

½wiðxijþ1; tÞ � wiðxij ; tÞ�: ð3Þ

Vector equation (2) can thus be expressed as the following system of three scalar differential-
difference equations:

Tijð1þ u0ijÞ

½ð1þ u0ijÞ
2 þ ðv0ijÞ

2 þ ðw0
ijÞ

2�1=2
�

Tij�1ð1þ u0
ij�1Þ

½ð1þ u0ij�1Þ
2 þ ðv0ij�1Þ

2 þ ðw0
ij�1Þ

2�1=2
¼ mij .uij ; ð4Þ

Tijv
0
ij

½ð1þ u0ijÞ
2 þ ðv0ijÞ

2 þ ðw0
ijÞ

2�1=2
�

Tij�1v
0
ij�1

½ð1þ u0ij�1Þ
2 þ ðv0ij�1Þ

2 þ ðw0
ij�1Þ

2�1=2
¼ mij .vij ; ð5Þ

Tijw
0
ij

½ð1þ u0
ijÞ

2 þ ðv0ijÞ
2 þ ðw0

ijÞ
2�1=2

�
Tij�1w

0
ij�1

½ð1þ u0ij�1Þ
2 þ ðv0ij�1Þ

2 þ ðw0
ij�1Þ

2�1=2
¼ mij .wij : ð6Þ
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We shall now determine the equations of motion for the mass located at the junction point.
Choosing the system x1y1z as the reference frame, we represent the tension exerted by the ith
string on the mass at the junction point as ðTi0Þ1 ¼ ðTið0; tÞÞ1: From Newton’s second law, it then
follows that XN

i¼1

ðTi0Þ1 ¼ m0.r10: ð7Þ

It is clear from the geometry that

ðTi0Þ1 ¼ ðTi0 	 ðe11ÞiÞe11 þ ðTi0 	 ðe12ÞiÞe12 þ ðTi0 	 e3Þe3;

where ðe11Þi and ðe12Þi designate the components of e11 and e12 in system xiyiz: Also, let

Ti0 ¼ Ti0si0;

where si0 ¼ sið0; tÞ is the unit vector parallel to ri1 � ri0 at time t; namely

si0 ¼
ð1þ u0

i0Þei1 þ v0i0ei2 þ w0
i0e3

½ð1þ u0i0Þ
2 þ ðv0i0Þ

2 þ ðw0
i0Þ

2�1=2
;

where u0i0; v
0
i0 and w0

i0 are given by Eq. (3). We also have

ðe11Þ2 ¼ e21 cos y1 � e22 sin y1;

ðe11Þ3 ¼ e31 cosðy1 þ y2Þ � e32 sinðy1 þ y2Þ;

^

ðe11ÞN ¼ eN1 cos
XN�1

k¼1

yk

 !
� eN2 sin

XN�1

k¼1

yk

 !

and

ðe12Þ2 ¼ e21 sin y1 þ e22 cos y1;

ðe12Þ3 ¼ e31 sinðy1 þ y2Þ þ e32 cosðy1 þ y2Þ;

^

ðe12ÞN ¼ eN1 sin
XN�1

k¼1

yk

 !
þ eN2 cos

XN�1

k¼1

yk

 !
:

Vector equation (7) is therefore equivalent to the following system of three scalar differential-
difference equations:XN

i¼1

Ti0½ð1þ u0i0Þ cosð
Pi�1

k¼0 ykÞ � v0i0 sinð
Pi�1

k¼0 ykÞ�

½ð1þ u0
i0Þ

2 þ ðv0i0Þ
2 þ ðw0

i0Þ
2�1=2

¼ m0 .u10; ð8Þ

XN

i¼1

Ti0½ð1þ u0i0Þ sinð
Pi�1

k¼0 ykÞ þ v0i0 cosð
Pi�1

k¼0 ykÞ�

½ð1þ u0
i0Þ

2 þ ðv0i0Þ
2 þ ðw0

i0Þ
2�1=2

¼ m0 .v10; ð9Þ

XN

i¼1

Ti0w
0
i0

½ð1þ u0
i0Þ

2 þ ðv0i0Þ
2 þ ðw0

i0Þ
2�1=2

¼ m0 .w10; ð10Þ
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where we have set y0 ¼ 0: The systems of equations (4)–(6) and (8)–(10) describe the motion of the
set of masses that discretizes a continuous N-string. To solve these equations one needs some
initial conditions and stress–strain relations giving the tension in each of the strings as a function
of its deformations; these points will be discussed later.
Eqs. (8)–(10) are a generalization of the known condition on the slopes of the strings of a

continuous N-string at the junction point for vibrations of small amplitude that are perpendicular
to its equilibrium plane (see Eq. (8) of Ref. [3]). In fact, in the limit of small-amplitude vibrations,
we have u0

i051; v0i051;w0
i051 and the tensions in each of the strings can be considered as being

constant. Eqs. (8)–(10) thus become

XN

i¼1

Ti0 cos
Xi�1

k¼0

yk

 !
¼ m0 .u10;

XN

i¼1

Ti0 sin
Xi�1

k¼0

yk

 !
¼ m0 .v10 ð11Þ

and

XN

i¼1

Ti0w
0
i0 ¼ m0 .w10: ð12Þ

We now assume that the tension is the same in all of the N strings. If m0 approaches zero in a
manner such that the ratios m0=hi; i ¼ 1; 2;y;N; remain constant, as in the case of a continuous
N-string, then Eq. (12) becomes

XN

i¼0

w0
i0ð0; tÞ ¼ 0;

which is Eq. (8) of Ref. [3]. Under these assumptions, we also have that the two equations of
Eq. (11) are identically zero. In the linear limit, it is, moreover, apparent from Eqs. (6) and (10)
that the perpendicular component w of the vibrations decouples from the others. This property is
pointed out in Ref. [1].
To solve the equations of motion of the discretized N-string, we must specify stress–strain

relations for Tiðxi; tÞ; i ¼ 1; 2;y;N: As in Ref. [4], we chose them to be of the form

Tiðxi; tÞ ¼ ti0 þ AiEif½ð1þ u0
iðxi; tÞÞ

2 þ ðv0iðxi; tÞÞ
2 þ ðw0

iðxi; tÞÞ
2�1=2 � 1g; ð13Þ

where ti0;Ai and Ei are, respectively, the tension, the cross-sectional area and the modulus of
elasticity of the ith string in its rest position, and u0

i; v
0
i;w

0
i are calculated using Eq. (3). To solve

systems (4)–(6) and (8)–(10) with Eq. (13), we transform each of the second order differential-
difference equations into two first order differential-difference equations. This leads to a system of
6ð
PN

i¼1 Ji þ 1Þ non-linear first order differential-difference equations for the unknowns uij ; vij ;wij :
The Runge–Kutta methods can be used to solve this system subjected to some initial conditions.
But before we find these solutions, we shall point out a property of the junction point which
applies to any discretized or continuous geometrically symmetric N-string.
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4. The horizontal position of the junction point

Denoting uiðxi0; tÞ; viðxi0; tÞ;wiðxi0; tÞ by ui0; vi0;wi0; respectively, it is straightforward to show
that

u20 ¼ u10 cos y1 þ v10 sin y1;

u30 ¼ u10 cosðy1 þ y2Þ þ v10 sinðy1 þ y2Þ;

^

uN0 ¼ u10 cos
XN�1

k¼1

yk

 !
þ v10 sin

XN�1

k¼1

yk

 !

and

v20 ¼ �u10 sin y1 þ v10 cos y1;

v30 ¼ �u10 sinðy1 þ y2Þ þ v10 cosðy1 þ y2Þ;

^

vN0 ¼ �u10 sin
XN�1

k¼1

yk

 !
þ v10 cos

XN�1

k¼1

yk

 !
:

We thus have XN

i¼2

ui0 ¼ u10

XN�1

k¼1

cos
Xk

j¼1

yj

 !" #
þ v10

XN�1

k¼1

sin
Xk

j¼1

yj

 !" #

and XN

i¼2

vi0 ¼ �u10

XN�1

k¼1

sin
Xk

j¼1

yj

 !" #
þ v10

XN�1

k¼1

cos
Xk

j¼1

yj

 !" #
:

Now, if y1 ¼ y2 ¼ ? ¼ yN ; we haveXN�1

i¼1

cos
Xi

j¼1

yj

 !
¼

sinðN � 1=2Þy1
2 sin y1=2

�
1

2
¼ �1 ð14Þ

and XN�1

i¼1

sin
Xi

j¼1

yj

 !
¼

cos y1=2� cosðN � 1=2Þy1
2 sin y1=2

¼ 0; ð15Þ

which in turn implies that XN

i¼1

ui0 ¼ 0 and
XN

i¼1

vi0 ¼ 0:

Therefore, if the N-string is geometrically symmetric, the arithmetic means of the xi and yi

components of the junction point displacement, i.e., its horizontal position in each of the frames
xiyiz; are zero for all tX0:
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5. Static equilibrium of a plucked continuous N-string

In order to specify the initial position of a discretized N-string, we shall now determine the
position of a plucked continuous N-string in static equilibrium. Let us consider a continuous N-
string which at time t ¼ 0 is plucked at the point x1 ¼ l1=m; m > 1; in a manner such that the
position of this point in the system x1y1z is described by

r1ðl1=m; 0Þ ¼
l1

m
þ Um

� 	
e11 þ Vme12 þ Wme3;

where Um;Vm and Wm are prescribed constants which correspond to the amplitude of
displacement at the plucked point. Assuming a linear static configuration of the plucked N-
string, to fully specify the position of all other points on the N-string at t ¼ 0; it is sufficient to
determine the corresponding position of the junction point. To see that, let

r1ð0; 0Þ ¼ U0e11 þ V0e12 þ W0e3

be the vector giving the junction point position with respect to system x1y1z at time t ¼ 0: The
parameters U0;V0;W0 depend on Um;Vm;Wm and on the physical characteristics of the N-string,
such as the tension in each of the N strings. Assuming that a static equilibrium is achieved in the
N-string, it is then easy to show that the positions of the other points of the N-string are given by
the linear functions

u1ðx1; 0Þ ¼
mx1

l1
ðUm � U0Þ þ U0 if 0px1pl1

m
;

mUm

m�1
ð1� x1

l1
Þ if l1

m
ox1pl1;

(
ð16Þ

v1ðx1; 0Þ ¼
mx1

l1
ðVm � V0Þ þ V0 if 0px1pl1

m
;

mVm

m�1
ð1� x1

l1
Þ if l1

m
ox1pl1;

(
ð17Þ

w1ðx1; 0Þ ¼
mx1

l1
ðWm � W0Þ þ W0 if 0px1pl1

m
;

mWm

m�1 ð1�
x1

l1
Þ if l1

m
ox1pl1

(
ð18Þ

and for j ¼ 2; 3;y;N and 0pxjplj;

ujðxj; 0Þ ¼ U0 cos
Xj�1

k¼1

yk þ V0 sin
Xj�1

k¼1

yk

 !
1�

xj

lj

� 	
; ð19Þ

vjðxj; 0Þ ¼ �U0 sin
Xj�1

k¼1

yk þ V0 cos
Xj�1

k¼1

yk

 !
1�

xj

lj

� 	
; ð20Þ

wjðxj; 0Þ ¼ W0 1�
xj

lj

� 	
: ð21Þ

To determine U0;V0;W0 from Um;Vm;Wm; system (8)–(10) with Eqs. (13) and (16)–(21), needs
to be solved with .u10 ¼ .v10 ¼ .w10 ¼ 0: The resulting system of non-linear equations can be
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expressed as a homogeneous system of the form

f1ðU0;V0;W0Þ ¼ 0; f2ðU0;V0;W0Þ ¼ 0; f3ðU0;V0;W0Þ ¼ 0; ð22Þ

where f1; f2 and f3 result from Eqs. (8)–(10), respectively. System (22) can be solved using a
standard non-linear system solver, such as Newton’s method.

6. Numerical results

In this section, in order to simplify the presentation we shall assume that the ri are constant on
each string. To reduce the number of parameters, we introduce dimensionless physical parameters
which will facilitate the analysis of the results. Using the first string as reference, we define
Li ¼ li=l1; Ri ¼ ri=r1; Ei ¼ EiAi=t10 and Ti0 ¼ ti0=t10 for i ¼ 1; 2;y;N: If %hi ¼ Li=Ji; then the
dimensionless masses of the corresponding discretized model are given by

%mi ¼ Ri
%hi ¼ mi=M1; i ¼ 1; 2;y;N

and

%m0 ¼
1

2

XN

i¼1

Ri
%hi ¼ m0=M1;

where M1 ¼ r1l1 is the mass of the first string. In addition to the initial conditions, the behaviour
of the N-string may thus depend on at most 4N � 5 independent physical parameters, where we
have taken into account the equilibrium between the N initial tensions. If we use l1; t10 and
ðm1l1=t10Þ

1=2 ¼ tref as reference length, initial string tension and time, respectively, and also if we
consider N strings whose string lengths are such that we can use the same step size for each string,
then Eqs. (4)–(6) can be rendered dimensionless and may be written as

%Tijð1þ %u0
ijÞ

½ð1þ %u0
ijÞ

2 þ ð%v0ijÞ
2 þ ð %w0

ijÞ
2�1=2

�
%Tij�1ð1þ %u0

ij�1Þ

½ð1þ %u0
ij�1Þ

2 þ ð%v0ij�1Þ
2 þ ð %w0

ij�1Þ
2�1=2

¼ Ri
.%uij; ð23Þ

%Tij %v
0
ij

½ð1þ %u0
ijÞ

2 þ ð%v0ijÞ
2 þ ð %w0

ijÞ
2�1=2

�
%Tij�1 %v

0
ij�1

½ð1þ %u0
ij�1Þ

2 þ ð%v0ij�1Þ
2 þ ð %w0

ij�1Þ
2�1=2

¼ Ri
.%vij; ð24Þ

%Tij %w
0
ij

½ð1þ %u0
ijÞ

2 þ ð%v0ijÞ
2 þ ð %w0

ijÞ
2�1=2

�
%Tij�1 %w

0
ij�1

½ð1þ %u0
ij�1Þ

2 þ ð%v0ij�1Þ
2 þ ð %w0

ij�1Þ
2�1=2

¼ Ri
.%wij; ð25Þ

where %Tij ¼ Tij=t10; %uij ¼ uij=l1; %vij ¼ vij=l1; %wij ¼ wij=l1; and each dot and the prime represent,
respectively, differentiation with respect to %t ¼ t=tref and %xi for 0p %xipLi: Similarly, the
dimensionless equations corresponding to Eqs. (8)–(10) are

XN

i¼1

%Ti0½ð1þ %u0i0Þ cosð
Pi�1

k¼0 ykÞ � %v0i0 sinð
Pi�1

k¼0 ykÞ�

½ð1þ %u0
i0Þ

2 þ ð%v0i0Þ
2 þ ð %w0

i0Þ
2�1=2

¼
1

2

XN

i¼1

Ri
.%u10; ð26Þ
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XN

i¼1

%Ti0½ð1þ %u0i0Þ sinð
Pi�1

k¼0 ykÞ þ %v0i0 cosð
Pi�1

k¼0 ykÞ�

½ð1þ %u0
i0Þ

2 þ ð%v0i0Þ
2 þ ð %w0

i0Þ
2�1=2

¼
1

2

XN

i¼1

Ri
.%v10; ð27Þ

XN

i¼1

%Ti0 %w
0
i0

½ð1þ %u0
i0Þ

2 þ ð%v0i0Þ
2 þ ð %w0

i0Þ
2�1=2

¼
1

2

XN

i¼1

Ri
.%w10: ð28Þ

The dimensionless expression corresponding to Eq. (13) becomes

%Tið %xi; %tÞ ¼ Ti0 þ Eif½ð1þ %u
0
ið %xi; %tÞÞ

2 þ ð%v0ið %xi; %tÞÞ
2 þ ð %w0

ið %xi; %tÞÞ
2�1=2 � 1g: ð29Þ

Finally, Eqs. (16)–(22) are easily rendered dimensionless by dividing by the reference length.
As mentioned in the previous section, system (22) is solved for the initial position of the

junction point ð %U0; %V0; %W0Þ using Newton’s method, for example. Initial guesses for ð %U0; %V0; %W0Þ
are thus required and convergence is extremely rapid. With this ð %U0; %V0; %W0Þ; Eqs. (23)–(29) are
then solved using a Runge–Kutta method. Validation tests were done to ensure convergence with
both spatial ð %hiÞ and temporal ðD%tÞ step sizes. It was found that the optimal step size D%t changes as
a function of the dimensionless physical parameters in the problem. Some experimentation with
D%t was required in order for the Runge–Kutta method to converge in a reasonable time. Apart
from this and long-term accuracy loss, which can be seen in Fig. 3, the numerical method was
found to be straightforward and efficient.
In the following numerical examples, we consider a symmetric 3-string whose three strings in

equilibrium form equal angles of 2p=3 at their junction point and are such thatLi ¼ Ri ¼ Ti0 ¼ 1
for i ¼ 1; 2; 3:We first validate our numerical model by comparing, in Fig. 3, the numerical results
and the analytical results from Ref. [3] which describe the small-amplitude decoupled vibrations
of the corresponding continuous 3-string. The curves shown describe the vibrations of a
symmetric 3-string where Ei ¼ 1; i ¼ 1; 2; 3; when the first string is initially plucked vertically at

%x1 ¼ 0:5 with an amplitude %Wm ¼ 0:01: The initial position of the 3-string is determined by
solving system (22). It is clear from this figure that for small-amplitude vibrations, and hence for
linear vibrations, the numerical results agree very well with the analytical solution.
Let us note that the choice of parameters Ti0 ¼ Ei; i ¼ 1; 2; 3 in Fig. 3 is not accidental. Keller

[9] indeed showed that with this special stress–strain law, the three components of large-amplitude
vibrations of an ordinary string decouple and can be described by the linear wave equation. Keller
further showed that certain materials, such as springs and rubber bands, follow this special stress–
strain law. In fact, it can easily be seen that when Eq. (29) with Ti0 ¼ Ei; i ¼ 1; 2; 3; is substituted
into Eqs. (23)–(28), then the denominators cancel and components of vibration decouple.
Moreover, it is easy to see that if the 3-string is plucked in a manner such that the masses undergo
no initial %u and %v motion, then the resulting vibrations will be purely perpendicular to the
equilibrium plane of the 3-string. This result was shown in Ref. [9] for an ordinary string and
generalizes to symmetric N strings. Note that Eqs. (26) and (27) imply that the %u and %v vibration
components no longer decouple if the N-string is not symmetric in its equilibrium position or if
the initial plucking results in a non-symmetric horizontal static configuration of the N-string. We
therefore compare in Fig. 3 our numerical results, with this special stress–strain law, to the linear
analytical results which correspond to decoupled vibrations governed by the linear wave equation.
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We shall now present some results which highlight the differences between the linear and the
non-linear vibrations of a symmetric 3-string and the capabilities of our numerical model. The
results shown in Figs. 4–7 are all for Ti0 ¼ Ei; i ¼ 1; 2; 3: We start by exploring, in Fig. 4, the
effects of a non-small plucking amplitude. The vibrations resulting from a plucked perpendicular
amplitude of %Wm ¼ 0:5 and 1 are compared in this figure with those resulting from the numerical
model for the small-amplitude case %Wm ¼ 0:01: To compare the different curves, we have
normalized the displacement %w for each curve using the corresponding plucked amplitude, i.e.,

%w= %Wm ¼ w=Wm: It appears that a greater plucked amplitude has the predictable effect of
increasing the vibration frequency and thus of lowering the relative amplitude of vibration, so that
energy is conserved. These effects are due to increased variations of the tension in the strings (see
Fig. 5), which results in greater acceleration and velocities. This phenomenon can be seen from
Fig. 6. We also note that the vibrations corresponding to greater plucked amplitudes are no longer
periodic.
It is important to note that the plucking functions (16)–(21) are general in the sense that one

string is plucked at one point and the elements of mass are free to move in any direction in order
to establish the static equilibrium. This will generally result in some %u and %v motion in the N-
string. If the N-string was plucked so that the %u and %v initial components of motion of each mass
were zero, then our choice of stress–strain law would imply that the curves of each graph
superpose in Fig. 4.
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Fig. 3. A comparison of the perpendicular components of vibration, %w; between the numerical model (dashed line) and

analytical solutions (solid line) for small-amplitude vibrations. The 3-string is such that Li ¼ Ri ¼ Ti0 ¼ Ei ¼ 1 and

Ji ¼ 51 for i ¼ 1; 2; 3; and %Um ¼ %Vm ¼ 0: The first string has been plucked at %x1 ¼ 0:5 to an amplitude of %Wm ¼ 0:01:
The displacements of %w shown are (a) at the plucked point %x1 ¼ 0:5; (b) at the junction point %x1 ¼ %x2 ¼ %x3 ¼ 0; and (c)

at %x2 ¼ 0:5 on the second string (and, by symmetry, at %x3 ¼ 0:5 on the third string).
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Fig. 5 shows the tension in the symmetric 3-string at the plucked point %x1 ¼ 0:5: The dashed line
represents the tension when the plucked amplitude is %Wm ¼ 0:01: In this case, the vibrations are of
small amplitude and the tension in the strings is virtually constant. This result confirms the
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Fig. 5. Dimensionless tension, %T1; in the first string at %x1 ¼ 0:5 for a plucked amplitude %Wm ¼ 0:01 (dashed line) and
%Wm ¼ 0:5 (solid line). All other parameters are the same as in Fig. 3.
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Fig. 4. Perpendicular vibrations normalized with the plucked amplitude %Wm for the same conditions as in Fig. 3, except

for the plucked amplitudes which are %Wm ¼ 0:01 (dashed line), %Wm ¼ 0:5 (dotted line) and %Wm ¼ 1 (solid line). The

displacements shown are for (a) the plucked point %x1 ¼ 0:5 and (b) the junction point %x1 ¼ %x2 ¼ %x3 ¼ 0:
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validity of the assumption of a constant tension in the strings used in the construction of the linear
model. The solid curve corresponds to the tension at %x1 ¼ 0:5 for a plucked height of %Wm ¼ 0:5:
The two graphs of Fig. 6 show the speed, d %w=d%t; at the junction point. The first graph is for a

plucked height %Wm ¼ 0:01; while for the second graph it is %Wm ¼ 0:5: The maximum speed in the
second graph is roughly 50 times the maximum speed in the first graph.
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(d) (e) (f )

(g) (h) (i)

Fig. 7. Movie (a)–(i) of a symmetric 3-string as it vibrates. The parameters are the same as in Fig. 3, with %Wm ¼ 0:5 at

%x1 ¼ 0:5: Frame (a) corresponds to %t ¼ 0:
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Fig. 6. Speed d %w=d%t ¼ ’%w at the junction point for (a) %Wm ¼ 0:01 and (b) %Wm ¼ 0:5: All the other parameters are the

same as in Fig. 3.
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Fig. 7 contains nine frames of a movie showing the configurations of a symmetric 3-string as it
vibrates. The physical parameters for the simulation are the same here as in Fig. 3, with %Wm ¼ 0:5
at %x1 ¼ 0:5:
In Fig. 8, the perpendicular component of vibration, %w; is shown for cases where the

components of vibration are coupled. The dashed line in this figure corresponds to the case
Ti0 ¼ 1 and Ei ¼ 2; i ¼ 1; 2; 3; and still resembles the curves in Fig. 4. However, a dramatic
departure from the linear decoupled case is observed for the two other curves which correspond to
Ei ¼ 200 and 0.02. These cases could be interpreted as a 3-string where the initial tension has been
decreased and increased, respectively, or where the modulus of elasticity has been increased or
decreased, respectively. The frequency of vibration does increase with an increased initial tension
in the strings, despite appearances in Fig. 8 where the opposite seems true, because of our
definition of tref :
In Fig. 9, a movie is shown of a vibrating symmetric 3-string whose first string has been

plucked in its equilibrium plane perpendicular to the string. More precisely, we have
%Um ¼ %Wm ¼ 0 and %Vm ¼ 0:1: The viewpoint here is perpendicular to the 3-string equilibrium
plane.

7. Discussion

In this paper, we have obtained a mathematical model which makes it possible to numerically
describe the non-linear vibrations of any kind of N-string initially plucked in any direction at one
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Fig. 8. A comparison of the perpendicular component %w of vibration for different values of Ei and %Wm ¼ 0:5 at

%x1 ¼ 0:5: The curves shown represent the displacements at the point %x1 ¼ 0:5 for the values Ei ¼ 200 (dotted line),

Ei ¼ 2 (dashed line) and Ei ¼ 0:02 (solid line), i ¼ 1; 2; 3: All the other parameters are the same as in Fig. 3.
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point. For small-amplitude vibrations perpendicular to the equilibrium plane of the N-string, the
numerical results coincide with the analytical solutions found in Ref. [3]. Our numerical model
allows one to describe any 3-D vibrations, be they of small or large amplitude, of any N-string
whose N strings can be of different or variable densities, of different lengths, have different initial
tensions or have different moduli of elasticity.
Let us add a few words about the numerical results of Section 6. We know that the %u and %v

vibration components are coupled if the projection, in its equilibrium plane, of the static plucked
configuration of the 3-string is not geometrically symmetric about the junction point. Considering
a symmetric 3-string whose strings are such that Ti0 ¼ Ei; i ¼ 1; 2; 3; and vibrations that are
initiated by a general plucking (which implies that the 3-string does not start from a horizontally
symmetric configuration), then the numerical results show only a slight departure from the linear
case for plucking amplitudes as large as about half the length of each string. However, the non-
linear effects become dominant when Ti0aEi; and this results in non-periodic vibrations.
Although not presented in this paper, we have also generated simulations of a 3-string subjected
to initial 3-D velocity conditions instead of plucking. This type of initial conditions is actually
easier to treat then the one examined in this paper.
No attempt has been made to explore the vast parameter space related to the problem of a

vibrating N-string. However, we have laid the groundwork for such a study by recasting the
equations in a dimensionless form, and identifying all the independent dimensionless physical
parameters, for the case where the ri are constant on each string.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Fig. 9. Movie (a)–(i) of a symmetric 3-string as it vibrates. The 3-string has been plucked in its equilibrium plane, on the

first string and perpendicular to the string with %Vm ¼ 0:1; %Um ¼ %Wm ¼ 0; Li ¼ Ti0 ¼ 1; Ei ¼ 2 and Ji ¼ 51 for i ¼
1; 2; 3: Frame (a) corresponds to %t ¼ 0:
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The model presented in this paper can be generalized to study the non-linear vibrations of more
complex networks of strings, including the controllability of such networks and their acoustic
characteristics. As we noted in Ref. [3], N strings can be used to produce sounds with unique tone
colours. A more realistic mathematical model than those of Ref. [3] and the present paper should
incorporate friction, such as air resistance. Work on this and on the construction of a physical
model of an N-string are in progress and will be reported in a subsequent paper.
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